Investigation of transcription repression and small-molecule responsiveness by TetR-like transcription factors using a heterologous Escherichia coli-based assay.
نویسندگان
چکیده
The SCO7222 protein and ActR are two of approximately 150 TetR-like transcription factors encoded in the Streptomyces coelicolor genome. Using bioluminescence as a readout, we have developed Escherichia coli-based biosensors that accurately report the regulatory activity of these proteins and used it to investigate their interactions with DNA and small-molecule ligands. We found that the SCO7222 protein and ActR repress the expression of their putative target genes, SCO7223 and actII-ORF2 (actA), respectively, by interacting with operator sequence in the promoters. The operators recognized by the two proteins are related such that O(7223) (an operator for SCO7223) could be bound by both the SCO7222 protein and ActR with similar affinities. In contrast, O(act) (an operator for actII-ORF2) was bound tightly by ActR and more weakly by the SCO7222 protein. We demonstrated ligand specificity of these proteins by showing that while TetR (but not ActR or the SCO7222 protein) interacts with tetracyclines, ActR (but not TetR or the SCO7222 protein) interacts with actinorhodin and related molecules. Through operator-targeted mutagenesis, we found that at least two nucleotide changes in O(7223) were required to disrupt its interaction with SCO7222 protein, while ActR was more sensitive to changes on O(act). Most importantly, we found that the interaction of each protein with wild-type and mutant operator sequences in vivo and in vitro correlated perfectly. Our data suggest that E. coli-based biosensors of this type should be broadly applicable to TetR-like transcription factors.
منابع مشابه
Detection of Viable But Non-Culturable State of Escherichia coli O157:H7 Using Reverse Transcription PCR
Background and Aims: Many bacteria including Escherichia coli may enter into a viable but non-culturable (VBNC) state under unfavorable stresses, which are unable to be detected by culture-based methods. In this study, the use of Reverse Transcription PCR (RT-PCR) for detection of VBNC state of E. coli O157:H7 was investigated. Materials and Methods: Escherichia. coli O157:H7 was inoculated i...
متن کاملIndependent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements.
Based on parameters governing promoter activity and using regulatory elements of the lac, ara and tet operon transcription control sequences were composed which permit the regulation in Escherichia coli of several gene activities independently and quantitatively. The novel promoter PLtetO-1 allows the regulation of gene expression over an up to 5000-fold range with anhydrotetracycline (aTc) whe...
متن کاملInvestigation of Changes in Tetracycline Repressor Binding upon Mutations in the Tetracycline Operator
The tetracycline operon is an important gene network component, commonly used in synthetic biology applications because of its switch-like character. At the heart of this system is the highly specific interaction of the tet repressor protein (TetR) with its cognate DNA sequence (tetO). TetR binding on tetO practically stops expression of genes downstream of tetO by excluding RNA polymerase from...
متن کاملA transcription activator-like effector induction system mediated by proteolysis
Simple and predictable trans-acting regulatory tools are needed in the fields of synthetic biology and metabolic engineering to build complex genetic circuits and optimize the levels of native and heterologous gene products. Transcription activator-like effectors (TALEs) are bacterial virulence factors that have recently gained traction in biotechnology applications owing to their customizable ...
متن کاملDevelopment of intracellular bacterial communities of uropathogenic Escherichia coli depends on type 1 pili.
Uropathogenic Escherichia coli, the predominant causative agent of urinary tract infections, use type 1 pili to bind and invade bladder epithelial cells. Upon entry, the bacteria rapidly replicate and enter a complex developmental pathway ultimately forming intracellular bacterial communities (IBCs), a niche with biofilm-like properties protected from innate defences and antibiotics. Paradoxica...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 189 18 شماره
صفحات -
تاریخ انتشار 2007